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Context

Hardware and software environment

I Multi-core / many-core systems

I How to exploit the hardware efficiently?

I Task-parallel languages based on fine-grained tasks

Performance debugging

I Requires analysis of complex interactions at execution time:
Application / Run-time / Machine

I Possible solution: Record dynamic events to a trace file

I Post-mortem (offline) analysis

Aftermath

I Trace visualization and support for manual analysis

I Originally developed for OpenStream language & run-time

I Work in progress: Automate repetitive tasks
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Outline

1. Aftermath

2. Insufficient parallelism and its causes

3. Performance anomalies during task execution

4. Work in progress: Status

5. Summary & Questions

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs



Aftermath
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Aftermath
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Aftermath

Task execution (dark blue)
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Aftermath
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Aftermath

Task creation (white)
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Aftermath

Searching for work (light blue)
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Aftermath

Basic statistics for run-time states
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Aftermath

Heatmap indicating task duration (white: fast, red: slow)
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Aftermath

NUMA heatmap indicating locality of memory accesses
(blue: local, pink: remote)
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Navigating through a trace

I Huge amounts of high-dimensional data

I Lots of features → lots of possibilities for analysis

I Where to look? What to look for?

I Expertise & lots of time required

Guide the user through performance analysis
I Refine analysis in several steps

I Start by analyzing parallelism
I Analyze what happens inside tasks

I Automate repetitive tasks
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Detecting insufficient parallelism

P0
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...

Task execution

Other states

Ideal situation
All CPUs are in task execution
state without any interruption

P0

Time

P1

P2

Pn-1
...

...

Task execution

Other states

Realistic scenario
Task creation, memory
allocation, idle time,
over-synchronization, . . .

Detect insufficient parallelism / high overhead automatically
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Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

d : Duration of the interval
de,i : Time that processor i spends in task execution state
te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d
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Detecting the cause of insufficient parallelism

Multiple stages during analysis

I If inequation does not hold, find out why

I Possible causes: task creation overhead, memory allocation,
not enough tasks available for execution, . . .

I Use thresholds for associated states:
tc (task creation), ti (idle time)

1 2 3 4 5 6 7 8 9 10

Interval selection

I Multiple intervals: initialization, termination, etc.

I Repeat analysis for different intervals
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Per-interval analysis of parallelism & overhead

Choose
Interval
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Detecting performance anomalies during task execution

During task execution
I Performance anomaly possible even at 100% task execution

(ineffective use of caches, remote memory accesses, branch
misprediction)
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Impact on the distribution of task duration
I Slowdown of all tasks
I Different groups / peaks
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Using performance counters

Hardware performance counters

I Implemented in hardware, no slowdown of the application

I Low tracing overhead if sampled at beginning / end of a task

I Dozens of hardware events can be monitored

Automatic analysis of performance counters

I Which hardware events are relevant?

I Manual testing tedious & time consuming
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Analyzing performance counters

Time

C
ou
nt
er
 v
al
ue

v(c,i,t)Pi

Per-CPU performance counter
I Absolute value v(c , i , t), monotonically increasing

I c : Counter (e.g. cache misses)
I i : Processor identifier
I t: Timestamp

I Sampled at the beginning and end of a task

Break down counter evolution to task instances

I Increase of c by task T : Nc,T = v(c, i , e)− v(c , i , s)
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Linear regression
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Perform linear regression

I Assume linear model: dTj
= α · Nc,Tj

+ β (α and β
constant)

I Compare coefficient of determination with threshold
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Shortcuts & refinement

Variation of task duration

I Determine coefficient of variation for task duration

I Only perform analysis if significant

Task types
I Different task types in an application

I Auxiliary tasks: initialization, termination
I Work tasks: matrix multiplication, decomposition, etc.

I Performance anomaly not necessarily present in all types

Topology of the machine

I Anomaly only present on subset of processors

I Example: Memory accesses local for one NUMA node, remote
on another
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Per-interval analysis of parallelism & overhead

Choose task type
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Example: K-means branch misprediction
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Example: K-means branch misprediction
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Example: K-means branch misprediction
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Work in progress: Status

Analysis of parallelism

I Per-interval analysis of time spent on task execution

I Per-interval analysis of time spent in run-time states

I Support for thresholds

I Loop performing analysis on set of intervals

Correlation of performance indicators

I Support for performance counters

I Task duration histogram

I Analysis of the variation of task durations

I Breaking down performance counter values to task instances

I Linear regression
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Summary

Aftermath

I Tool for trace-based analysis of task-parallel programs

I Currently provides only support for manual analysis

I Available at http://openstream.info/aftermath

Automatic analysis of parallelism based on thresholds

I Amount of time spent on task execution sufficiently high?

I If not, perform subsequent threshold-based analysis for states
associated with overhead of the run-time system

Automatic correlation of performance indicators

I Indicate which events are relevant

I Break down counter evolution to task instances

I Correlate with task duration
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