
Automatic Detection of Performance Anomalies in
Task-Parallel Programs

Work in progress on the Aftermath trace analysis tool

Andi Drebes

Université Pierre et Marie Curie
Laboratoire d’Informatique de Paris VI

andi.drebes@lip6.fr

Joint work with:
Antoniu Pop, Karine Heydemann

Albert Cohen, Nathalie Drach

RACING’14, May 30th, 2014

Open tream



Context

Hardware and software environment

I Multi-core / many-core systems

I How to exploit the hardware efficiently?

I Task-parallel languages based on fine-grained tasks

Performance debugging

I Requires analysis of complex interactions at execution time:
Application / Run-time / Machine

I Possible solution: Record dynamic events to a trace file

I Post-mortem (offline) analysis

Aftermath

I Trace visualization and support for manual analysis

I Originally developed for OpenStream language & run-time

I Work in progress: Automate repetitive tasks

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 1 / 16



Context

Hardware and software environment

I Multi-core / many-core systems

I How to exploit the hardware efficiently?

I Task-parallel languages based on fine-grained tasks

Performance debugging

I Requires analysis of complex interactions at execution time:
Application / Run-time / Machine

I Possible solution: Record dynamic events to a trace file

I Post-mortem (offline) analysis

Aftermath

I Trace visualization and support for manual analysis

I Originally developed for OpenStream language & run-time

I Work in progress: Automate repetitive tasks

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 1 / 16



Context

Hardware and software environment

I Multi-core / many-core systems

I How to exploit the hardware efficiently?

I Task-parallel languages based on fine-grained tasks

Performance debugging

I Requires analysis of complex interactions at execution time:
Application / Run-time / Machine

I Possible solution: Record dynamic events to a trace file

I Post-mortem (offline) analysis

Aftermath

I Trace visualization and support for manual analysis

I Originally developed for OpenStream language & run-time

I Work in progress: Automate repetitive tasks

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 1 / 16



Outline

1. Aftermath

2. Insufficient parallelism and its causes

3. Performance anomalies during task execution

4. Work in progress: Status

5. Summary & Questions

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs



Aftermath

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

TimelineTimeline

F
il

te
rs

F
il

te
rs

Detailed text viewDetailed text view

S
ta

ti
st

ic
s

S
ta

ti
st

ic
s

Menu bar: derived metricsMenu bar: derived metrics

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Time

P
ro
ce
so
rs

Activity
during
execution

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Task execution (dark blue)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Task Task Task

Instance Instance Instance

Task execution (dark blue)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Task creation (white)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Searching for work (light blue)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Basic statistics for run-time states

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

Heatmap indicating task duration (white: fast, red: slow)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Aftermath

NUMA heatmap indicating locality of memory accesses
(blue: local, pink: remote)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 2 / 16



Navigating through a trace

I Huge amounts of high-dimensional data

I Lots of features → lots of possibilities for analysis

I Where to look? What to look for?

I Expertise & lots of time required

Guide the user through performance analysis
I Refine analysis in several steps

I Start by analyzing parallelism
I Analyze what happens inside tasks

I Automate repetitive tasks

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 3 / 16



Navigating through a trace

I Huge amounts of high-dimensional data

I Lots of features → lots of possibilities for analysis

I Where to look? What to look for?

I Expertise & lots of time required

Guide the user through performance analysis
I Refine analysis in several steps

I Start by analyzing parallelism
I Analyze what happens inside tasks

I Automate repetitive tasks

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 3 / 16



Detecting insufficient parallelism

P0

Time

P1

P2

Pn-1

...

...

Task execution

Other states

Ideal situation
All CPUs are in task execution
state without any interruption

P0

Time

P1

P2

Pn-1
...

...

Task execution

Other states

Realistic scenario
Task creation, memory
allocation, idle time,
over-synchronization, . . .

Detect insufficient parallelism / high overhead automatically

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 4 / 16



Detecting insufficient parallelism

P0

Time

P1

P2

Pn-1

...

...

Task execution

Other states

Ideal situation
All CPUs are in task execution
state without any interruption

P0

Time

P1

P2

Pn-1
...

...

Task execution

Other states

Realistic scenario
Task creation, memory
allocation, idle time,
over-synchronization, . . .

Detect insufficient parallelism / high overhead automatically

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 4 / 16



Detecting insufficient parallelism

P0

Time

P1

P2

Pn-1

...

...

Task execution

Other states

Ideal situation
All CPUs are in task execution
state without any interruption

P0

Time

P1

P2

Pn-1
...

...

Task execution

Other states

Realistic scenario
Task creation, memory
allocation, idle time,
over-synchronization, . . .

Detect insufficient parallelism / high overhead automatically

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 4 / 16



Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

d : Duration of the interval
de,i : Time that processor i spends in task execution state
te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 5 / 16



Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

d : Duration of the interval

de,i : Time that processor i spends in task execution state
te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 5 / 16



Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

de,0+ + + +

d : Duration of the interval
de,i : Time that processor i spends in task execution state

te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 5 / 16



Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

de,1+

d : Duration of the interval
de,i : Time that processor i spends in task execution state

te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 5 / 16



Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

de,2+ + + +

d : Duration of the interval
de,i : Time that processor i spends in task execution state

te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 5 / 16



Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

de,n-1+

d : Duration of the interval
de,i : Time that processor i spends in task execution state

te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 5 / 16



Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

d : Duration of the interval
de,i : Time that processor i spends in task execution state
te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 5 / 16



Threshold-based analysis of parallelism

P0

Time

d

P1

P2

Pn-1

...

...

Task execution

Other states

d : Duration of the interval
de,i : Time that processor i spends in task execution state
te : Threshold for task execution, e.g. te = 0.95

Consider that there is sufficient parallelism if inequation holds:

n∑
i=1

de,i > te · n · d

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 5 / 16



Detecting the cause of insufficient parallelism

Multiple stages during analysis

I If inequation does not hold, find out why

I Possible causes: task creation overhead, memory allocation,
not enough tasks available for execution, . . .

I Use thresholds for associated states:
tc (task creation), ti (idle time)

1 2 3 4 5 6 7 8 9 10

Interval selection

I Multiple intervals: initialization, termination, etc.

I Repeat analysis for different intervals

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 6 / 16



Detecting the cause of insufficient parallelism

Multiple stages during analysis

I If inequation does not hold, find out why

I Possible causes: task creation overhead, memory allocation,
not enough tasks available for execution, . . .

I Use thresholds for associated states:
tc (task creation), ti (idle time)

1 2 3 4 5 6 7 8 9 10

Interval selection

I Multiple intervals: initialization, termination, etc.

I Repeat analysis for different intervals

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 6 / 16



Per-interval analysis of parallelism & overhead

Choose
Interval

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 7 / 16



Per-interval analysis of parallelism & overhead

Choose
Interval

Analyze task
execution time

AboveSufficient
parallelism

No interval
left

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 7 / 16



Per-interval analysis of parallelism & overhead

Choose
Interval

Analyze task
execution time

Analyze task

synchronization
Analyze task

creation time
...

Below

AboveSufficient
parallelism

No interval
left

Analyze
idle time

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 7 / 16



Per-interval analysis of parallelism & overhead

Choose
Interval

Analyze task
execution time

Analyze
idle time

Analyze task

synchronization
Analyze task

creation time
...

Inefficient
synchroni-

zation

Not
enough

parallelism
exposed

High task
creation
overhead

...

BelowAbove BelowAbove BelowAbove BelowAbove

Below

AboveSufficient
parallelism

No interval
left

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 7 / 16



Detecting performance anomalies during task execution

During task execution
I Performance anomaly possible even at 100% task execution

(ineffective use of caches, remote memory accesses, branch
misprediction)

N
um
be
r 
of
 t
as
ks

Duration

N
um
be
r 
of
 t
as
ks

Duration

Impact on the distribution of task duration
I Slowdown of all tasks
I Different groups / peaks

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 8 / 16



Detecting performance anomalies during task execution

During task execution
I Performance anomaly possible even at 100% task execution

(ineffective use of caches, remote memory accesses, branch
misprediction)

N
um
be
r 
of
 t
as
ks

Duration
N
um
be
r 
of
 t
as
ks

Duration

Impact on the distribution of task duration
I Slowdown of all tasks
I Different groups / peaks

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 8 / 16



Using performance counters

Hardware performance counters

I Implemented in hardware, no slowdown of the application

I Low tracing overhead if sampled at beginning / end of a task

I Dozens of hardware events can be monitored

Automatic analysis of performance counters

I Which hardware events are relevant?

I Manual testing tedious & time consuming

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 9 / 16



Using performance counters

Hardware performance counters

I Implemented in hardware, no slowdown of the application

I Low tracing overhead if sampled at beginning / end of a task

I Dozens of hardware events can be monitored

Automatic analysis of performance counters

I Which hardware events are relevant?

I Manual testing tedious & time consuming

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 9 / 16



Analyzing performance counters

Time

C
ou
nt
er
 v
al
ue

v(c,i,t)Pi

Per-CPU performance counter
I Absolute value v(c , i , t), monotonically increasing

I c : Counter (e.g. cache misses)
I i : Processor identifier
I t: Timestamp

I Sampled at the beginning and end of a task

Break down counter evolution to task instances

I Increase of c by task T : Nc,T = v(c, i , e)− v(c , i , s)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 10 / 16



Analyzing performance counters

T

Time

C
ou
nt
er
 v
al
ue

v(c,i,t)Pi

Per-CPU performance counter
I Absolute value v(c , i , t), monotonically increasing

I c : Counter (e.g. cache misses)
I i : Processor identifier
I t: Timestamp

I Sampled at the beginning and end of a task

Break down counter evolution to task instances

I Increase of c by task T : Nc,T = v(c, i , e)− v(c , i , s)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 10 / 16



Analyzing performance counters

T

Time

C
ou
nt
er
 v
al
ue

s e

v(c,i,t)Pi

Per-CPU performance counter
I Absolute value v(c , i , t), monotonically increasing

I c : Counter (e.g. cache misses)
I i : Processor identifier
I t: Timestamp

I Sampled at the beginning and end of a task

Break down counter evolution to task instances

I Increase of c by task T : Nc,T = v(c, i , e)− v(c , i , s)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 10 / 16



Analyzing performance counters

T

Time

C
ou
nt
er
 v
al
ue

s e

v(c,i,t)Pi Nc,T

Per-CPU performance counter
I Absolute value v(c , i , t), monotonically increasing

I c : Counter (e.g. cache misses)
I i : Processor identifier
I t: Timestamp

I Sampled at the beginning and end of a task

Break down counter evolution to task instances

I Increase of c by task T : Nc,T = v(c, i , e)− v(c , i , s)

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 10 / 16



Linear regression

D
ur
at
io
n

Nc,TjPerformance indicator value

d
T
j

Perform linear regression

I Assume linear model: dTj
= α · Nc,Tj

+ β (α and β
constant)

I Compare coefficient of determination with threshold

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 11 / 16



Linear regression

D
ur
at
io
n

Nc,TjPerformance indicator value

d
T
j

Perform linear regression

I Assume linear model: dTj
= α · Nc,Tj

+ β (α and β
constant)

I Compare coefficient of determination with threshold

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 11 / 16



Linear regression

D
ur
at
io
n

Nc,TjPerformance indicator value

d
T
j

Perform linear regression

I Assume linear model: dTj
= α · Nc,Tj

+ β (α and β
constant)

I Compare coefficient of determination with threshold

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 11 / 16



Shortcuts & refinement

Variation of task duration

I Determine coefficient of variation for task duration

I Only perform analysis if significant

Task types
I Different task types in an application

I Auxiliary tasks: initialization, termination
I Work tasks: matrix multiplication, decomposition, etc.

I Performance anomaly not necessarily present in all types

Topology of the machine

I Anomaly only present on subset of processors

I Example: Memory accesses local for one NUMA node, remote
on another

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 12 / 16



Shortcuts & refinement

Variation of task duration

I Determine coefficient of variation for task duration

I Only perform analysis if significant

Task types
I Different task types in an application

I Auxiliary tasks: initialization, termination
I Work tasks: matrix multiplication, decomposition, etc.

I Performance anomaly not necessarily present in all types

Topology of the machine

I Anomaly only present on subset of processors

I Example: Memory accesses local for one NUMA node, remote
on another

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 12 / 16



Shortcuts & refinement

Variation of task duration

I Determine coefficient of variation for task duration

I Only perform analysis if significant

Task types
I Different task types in an application

I Auxiliary tasks: initialization, termination
I Work tasks: matrix multiplication, decomposition, etc.

I Performance anomaly not necessarily present in all types

Topology of the machine

I Anomaly only present on subset of processors

I Example: Memory accesses local for one NUMA node, remote
on another

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 12 / 16



Per-interval analysis of parallelism & overhead

Choose task type

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose task type
Choose set

of processors

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose task type
Choose set

of processors
Check varation

of task duration

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose task type
Choose set

of processors
Check varation

of task duration

Low

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose set of

performance

counters

Choose task type
Choose set

of processors
Check varation

of task duration

Low
High

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose set of

performance

counters

Choose task type
Choose set

of processors

Break down values

to task instances

Check varation

of task duration

Low
High

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose set of

performance

counters

Choose task type
Choose set

of processors

Correlate per-task

instance values

and duration

Break down values

to task instances

Check varation

of task duration

Low
High

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose set of

performance

counters

Choose task type
Choose set

of processors

Correlate per-task

instance values

and duration

Break down values

to task instances

Check varation

of task duration

Lo
w

Event set

irrelevant

Low
High

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose set of

performance

counters

Choose task type
Choose set

of processors

Correlate per-task

instance values

and duration

Break down values

to task instances

Check varation

of task duration

Lo
w

High

Event set

irrelevant

Event set

relevant

Low
High

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose set of

performance

counters

Choose task type
Choose set

of processors

Correlate per-task

instance values

and duration

Break down values

to task instances

Check varation

of task duration

Lo
w

High

Event set

irrelevant

Event set

relevant

Low
High

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose set of

performance

counters

Choose task type
Choose set

of processors

Correlate per-task

instance values

and duration

Break down values

to task instances

Check varation

of task duration

Lo
w

High

Event set

irrelevant

Event set

relevant

No set left

Low
High

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Per-interval analysis of parallelism & overhead

Choose set of

performance

counters

Choose task type
Choose set

of processors

Correlate per-task

instance values

and duration

Break down values

to task instances

Check varation

of task duration

Lo
w

High

No set left

Event set

irrelevant

Event set

relevant

No set left

Low
High

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 13 / 16



Example: K-means branch misprediction

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 14 / 16



Example: K-means branch misprediction

 0

 500

 1000

 1500

 2000

 2500

 0

 2
e+

06

 4
e+

06

 6
e+

06

 8
e+

06

 1
e+

07

 1
.2

e+
07

 1
.4

e+
07

 1
.6

e+
07

 1
.8

e+
07

 2
e+

07

N
u
m

b
e
r 

o
f 

ta
s
k
s

Task duration [cycles]

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 14 / 16



Example: K-means branch misprediction

0.0×100

2.0×106

4.0×106

6.0×106

8.0×106

1.0×107

1.2×107

1.4×107

1.6×107

1.8×107

2.0×107

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

 1
00

00
0

Ta
s
k
 d

u
ra

ti
o
n
 [

c
y
c
le

s
]

Branch mispredictions

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 14 / 16



Example: K-means branch misprediction

0.0×100

2.0×106

4.0×106

6.0×106

8.0×106

1.0×107

1.2×107

1.4×107

1.6×107

1.8×107

2.0×107

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

 1
00

00
0

Ta
s
k
 d

u
ra

ti
o
n
 [

c
y
c
le

s
]

Branch mispredictions

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 14 / 16



Example: K-means branch misprediction

Low mispre-
diction rate
Low mispre-
diction rate

High mispre-
diction rate
High mispre-
diction rate

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 14 / 16



Work in progress: Status

Analysis of parallelism

I Per-interval analysis of time spent on task execution

I Per-interval analysis of time spent in run-time states

I Support for thresholds

I Loop performing analysis on set of intervals

Correlation of performance indicators

I Support for performance counters

I Task duration histogram

I Analysis of the variation of task durations

I Breaking down performance counter values to task instances

I Linear regression

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 15 / 16



Work in progress: Status

Analysis of parallelism

I Per-interval analysis of time spent on task execution

I Per-interval analysis of time spent in run-time states

I Support for thresholds

I Loop performing analysis on set of intervals

Correlation of performance indicators

I Support for performance counters

I Task duration histogram

I Analysis of the variation of task durations

I Breaking down performance counter values to task instances

I Linear regression

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 15 / 16



Work in progress: Status

Analysis of parallelism

I Per-interval analysis of time spent on task execution

I Per-interval analysis of time spent in run-time states

I Support for thresholds

I Loop performing analysis on set of intervals

Correlation of performance indicators

I Support for performance counters

I Task duration histogram

I Analysis of the variation of task durations

I Breaking down performance counter values to task instances

I Linear regression

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 15 / 16



Work in progress: Status

Analysis of parallelism

I Per-interval analysis of time spent on task execution

I Per-interval analysis of time spent in run-time states

I Support for thresholds

I Loop performing analysis on set of intervals

Correlation of performance indicators

I Support for performance counters

I Task duration histogram

I Analysis of the variation of task durations

I Breaking down performance counter values to task instances

I Linear regression

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 15 / 16



Summary

Aftermath

I Tool for trace-based analysis of task-parallel programs

I Currently provides only support for manual analysis

I Available at http://openstream.info/aftermath

Automatic analysis of parallelism based on thresholds

I Amount of time spent on task execution sufficiently high?

I If not, perform subsequent threshold-based analysis for states
associated with overhead of the run-time system

Automatic correlation of performance indicators

I Indicate which events are relevant

I Break down counter evolution to task instances

I Correlate with task duration

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 16 / 16

http://openstream.info/aftermath


Summary

Aftermath

I Tool for trace-based analysis of task-parallel programs

I Currently provides only support for manual analysis

I Available at http://openstream.info/aftermath

Automatic analysis of parallelism based on thresholds

I Amount of time spent on task execution sufficiently high?

I If not, perform subsequent threshold-based analysis for states
associated with overhead of the run-time system

Automatic correlation of performance indicators

I Indicate which events are relevant

I Break down counter evolution to task instances

I Correlate with task duration

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 16 / 16

http://openstream.info/aftermath


Summary

Aftermath

I Tool for trace-based analysis of task-parallel programs

I Currently provides only support for manual analysis

I Available at http://openstream.info/aftermath

Automatic analysis of parallelism based on thresholds

I Amount of time spent on task execution sufficiently high?

I If not, perform subsequent threshold-based analysis for states
associated with overhead of the run-time system

Automatic correlation of performance indicators

I Indicate which events are relevant

I Break down counter evolution to task instances

I Correlate with task duration

Andi Drebes – Automatic Detection of Performance Anomalies in Task-Parallel Programs 16 / 16

http://openstream.info/aftermath

	Aftermath
	Insufficient parallelism and its causes
	Performance anomalies during task execution
	Work in progress: Status
	Summary & Questions

